Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
RSC Adv ; 13(35): 24309-24318, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37583664

RESUMO

The aim of this study was to develop biotinylated chitosan (Bio-Chi) decorated multi-walled carbon nanotubes (MWCNTs) for breast cancer therapy with the tyrosine kinase inhibitor, neratinib (NT). For achieving such a purpose, carboxylic acid functionalized multiwalled carbon nanotubes (c-MWCNTs) were initially decorated non-covalently with biotin-chitosan (Bio-Chi) coating for achieving a dual targeting mode; pH-dependent release with chitosan and biotin-receptor mediated active targeting with biotin. Afterwards, Bio-Chi decorated c-MWCNTs were loaded with the tyrosine kinase inhibitor, neratinib (NT). The formulation was then characterized by dynamic light scattering, FTIR and EDX. The drug loading efficiency was estimated to be 95.6 ± 1.2%. In vitro drug release studies revealed a pH-dependent release of NT from Bio-Chi decorated c-MWCNTs, with a higher drug release under acidic pH conditions. Sulforhodamine B (SRB) cytotoxicity assay of different NT formulations disclosed dose-dependent cytotoxicities against SkBr3 cell line, with a superior cytotoxicity observed with NT-loaded Bio-Chi-coated c-MWCNTs, compared to either free NT or NT-loaded naked c-MWCNTs. The IC50 values for free NT, NT-loaded c-MWCNTs and NT-loaded Bio-Chi-coated c-MWCNTs were 548.43 ± 23.1 µg mL-1, 319.55 ± 17.9 µg mL-1, and 257.75 ± 24.5 µg mL-1, respectively. Interestingly, competitive cellular uptake studies revealed that surface decoration of drug-loaded c-MWCNTs with Bio-Chi permitted an enhanced uptake of c-MWCNTs by breast cancer cells, presumably, via biotin receptors-mediated endocytosis. To sum up, Bio-Chi-decorated c-MWCNTs might be a promising delivery vehicle for mediating cell-specific drug delivery to breast cancer cells.

2.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202080

RESUMO

Alveolar macrophages are the first line of defense against intruding pathogens and play a critical role in cancer immunology. The Toll-like receptor (TLR) family mediates an important role in recognizing and mounting an immune response against intruding microbes. TLR-9 is a member of the intracellular TLR family, which recognizes unmethylated CG motifs from the prokaryotic genome. Upon its activation, TLR-9 triggers downstream of the MyD-88-dependent transcriptional activation of NF-κB, and subsequently results in abundant inflammatory cytokines expression that induces a profound inflammatory milieu. The present exploratory investigation aimed at elucidating the potency of schizophyllan for entrapping ODN 1826 (SPG-ODN 1826)-mediated stimulation of TLR-9 in provoking an inflammatory-type response in murine alveolar macrophages. Schizophyllan (SPG), a representative of the ß-glucan family, was used in the present study as a nanovehicle for endosomal trafficking of CpG ODN 1826. TEM analysis of SPG-ODN 1826 nanovehicles revealed that the prepared nanovehicles are spherical and have an average size of about 100 nm. Interestingly, SPG-ODN 1826 nanovehicles were competent in delivering their therapeutic payload within endosomes of murine alveolar macrophage (J774A.1) cells. Exposure of these nanovehicles within LPS stimulated J774A.1, resulted in a significant provocation of reactive oxygen species (ROS) (p < 0.01) in comparison to CpG ODN 1826 alone. Moreover, the formulated nanovehicles succeeded in generating a profound Th1-based cytokine profile constituted by enhanced expression of IFN-γ (p < 0.001) and IL-1ß (p < 0.001) inflammatory cytokines. These findings clearly indicated the immunostimulatory potential of SPG-ODN 1826 nanovehicles for inducing the Th1-type phenotype, which would certainly assist in skewing M2 phenotype into the much-desired M1 type during lung cancer.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Nanoestruturas/química , Oligodesoxirribonucleotídeos/química , Sizofirano/química , Receptor Toll-Like 9/agonistas , Animais , Sobrevivência Celular , Citocinas/metabolismo , Endossomos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Tamanho da Partícula
3.
Curr Protein Pept Sci ; 21(12): 1184-1192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101122

RESUMO

Alzheimer's disease (AD) is characterized by deposition of amyloid-ß protein aggregates and an appropriate treatment strategy is urgently needed, as the number of diagnosed cases continues to increase. The management of AD and other brain-associated diseases is limited by the blood brain barrier and its selective control of drug passage. In fact, most of the promising drugs have restricted curative effects on AD owing to their lower bioavailability. Gold nanoparticles (AuNPs) have emerged as attractive therapeutic agents and have distinctive properties that could contribute to the development of a novel treatment strategy for neurodegenerative disorders. In this review article, we attempt to identify promising ways of developing competent AD therapeutic agents from anti-amyloid aggregating AuNPs. Initially, we discuss the current status of anti-amyloid inhibitors, the abilities of AuNPs to inhibit amyloid aggregation, and mechanistic aspects, and then describe plausible modifications that could aid the translation of AuNP-based therapeutics into neuromedicines. The review highlights some interesting characteristics that might effectively bridge the gap between laboratory and bedside treatments.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Biomarcadores/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catequina/análogos & derivados , Catequina/uso terapêutico , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular/métodos , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Resveratrol/uso terapêutico , Pesquisa Translacional Biomédica
4.
Molecules ; 24(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491967

RESUMO

Alzheimer's disease (AD) is a widespread dynamic neurodegenerative malady. Its etiology is still not clear. One of the foremost pathological features is the extracellular deposits of Amyloid-beta (Aß) peptides in senile plaques. The interaction of Aß and the receptor for advanced glycation end products at the blood-brain barrier is also observed in AD, which not only causes the neurovascular anxiety and articulation of proinflammatory cytokines, but also directs reduction of cerebral bloodstream by upgrading the emission of endothelin-1 to induce vasoconstriction. In this process, RAGE is deemed responsible for the influx of Aß into the brain through BBB. In the current study, we predicted the interaction potential of the natural compounds vincamine, ajmalicine and emetine with the Aß peptide concerned in the treatment of AD against the standard control, curcumin, to validate the Aß peptide-compounds results. Protein-protein interaction studies have also been carried out to see their potential to inhibit the binding process of Aß and RAGE. Moreover, the current study verifies that ligands are more capable inhibitors of a selected target compared to positive control with reference to ΔG values. The inhibition of Aß and its interaction with RAGE may be valuable in proposing the next round of lead compounds for effective Alzheimer's disease treatment.


Assuntos
Peptídeos beta-Amiloides/química , Produtos Biológicos/química , Modelos Moleculares , Doença de Alzheimer , Aminoácidos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/antagonistas & inibidores , Proteínas Amiloidogênicas/química , Sítios de Ligação , Produtos Biológicos/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
5.
Curr Protein Pept Sci ; 19(9): 841-849, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28847292

RESUMO

Breast cancer cases in women are increasing at an alarming rate globally and extensive research is being conducted to identify a breakthrough medicine against this dreadful disease. In fact, researchers are looking for fresh targets to develop novel treatment strategies for cancer of the breasts. In this article, 'amyloid precursor protein' or (APP) and its processing enzymes are deeply studied so as to explore the same as prospective targets for breast cancer treatment. Even though most of the studies on APP and its processing enzymes have been performed on neuronal cells owing to their linkage with Alzheimer's disease, they are omnipresent on various non-neuronal cells also. Interestingly, APP and its processing enzymes have a role in the proliferation of cancer cells as well as in their growth, adherence and movement. Over-synthesis of APP and its processing enzymes are emerging as important hallmark features in breast cancer. It has been found that APP and its processing enzymes, i.e., γ-secretase and α- secretase are strongly linked with breast cancer via Akt phosporylation and Notch signaling pathways. Thus, targeting APP or γ-secretase or α-secretase could be considered as an effective strategy to treat breast cancer and even metastasis. There are various clinical trials which are in progress to explore the potential of γ-secretase inhibitor against breast cancer. Hence, the present review is composed of two sections, one section deals with all the possible linkages of APP and APP processing enzymes (α- secretase, ß-secretase and γ-secretase) with breast cancer. However, the other section provides recent information on breast cancer treatment strategy using APP and APP processing enzymes as targets. We strongly believe that compilation of these studies would be beneficial to the scientist working in the field of 'breast cancer-treatment'.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias da Mama/terapia , Terapia de Alvo Molecular/métodos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fosforilação
6.
Curr Comput Aided Drug Des ; 13(4): 311-318, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28413992

RESUMO

BACKGROUND: The present study clarifies the molecular interactions of human BACE1 with novel natural ligands and also with the well-known ligand 2, 2, 4-trihydroxychalcone and Galangin for comparison. OBJECTIVE: The study of enzyme- ligands interaction is interesting, thus description of ligands binding to the active site of target molecule could be beneficial for better understanding the mechanism of the ligand on the target molecule. METHODS: Lipinski rule of five and docking study were performed between ligands and enzyme using 'Autodock4.2'. RESULTS: It was found that hydrogen bond interactions play a significant role in the accurate positioning of ligands within the 'active site' of BACE1 to permit docking. Such information may aid to propose the BACE1 -inhibitors and is estimated to aid in the safe medical use of ligands. Selected ligands of BACE1 also inhibit the aggregated amyloid beta peptide. The aggregation of amyloid peptides Aß1-42 may be responsible for AD. CONCLUSION: Scope lies in the determination of the 3-dimensional structure of BACE1 and ligands complex by X-ray crystallography to certify the explained data. To validate the enzyme -ligands results, we considered 2, 2, 4-trihydroxychalconeas and Galangin as a positive control. Moreover, the current study verifies that ligands are more capable inhibitors of human BACE1 compared to positive control with reference to ΔG values.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Domínio Catalítico , Chalconas/química , Chalconas/farmacologia , Cristalografia por Raios X , Flavonoides/química , Flavonoides/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica , Termodinâmica
7.
Saudi J Biol Sci ; 22(1): 62-4, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25561885

RESUMO

Resistance to broad-spectrum beta-lactams, mediated by extended-spectrum beta-lactamase enzymes (ESBL), is an increasing problem worldwide. The present study was undertaken to determine the incidence of ESBL-production among the clinical isolates of Pseudomonas aeruginosa and their susceptibility to selected antimicrobials. A total of one eighty-seven clinical specimens were tested for the presence of ESBL production using the double-disc synergy test. Of these, 25.13% (n = 47) isolates of P. aeruginosa were observed as ESBL positive. The maximum number of ESBL-producing strains were found in sputum (41.67%; n = 24) followed by pus (28.36%; n = 19), cerebrospinal fluid and other body fluids (21.74%; n = 5), urine (20.45%; n = 9) and blood (13.79%; n = 4). ESBL producing isolates exhibited co-resistance to an array of antibiotics tested. Imipenem and meropenem can be suggested as the drugs of choice in our study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...